ester formation or by repression of ionization increases the velocity constant over a hundred fold when the bromine is in the α -position to the group bearing the charge, but has little effect when the bromine is in the β -position. All of these facts are in accord with the predictions of the electrostatic theory of reaction velocity.

4. For the α -bromopropionate-thiosulfate reaction, the limiting slope predicted by the Brönsted-Debye theory is approached for concentrations less than $\sqrt{\mu} = 0.06$. For the β -bromopropionate-thiosulfate reaction the velocity constant contrary to this theory increases with decreasing $\sqrt{\mu}$ values, the effect being most marked in the very dilute region.

5. As an explanation of this anomalous result for the β -bromopropionate, a theory based on the assumption of oriented collision is submitted.

NEW YORK, N. Y.

[CONTRIBUTION FROM THE JOHN HARRISON LABORATORY OF CHEMISTRY, UNIVERSITY OF PENNSYLVANIA]

THE CRYSTALLINE FORM OF SOME NEW COBALTAMMINES¹

By Lester W. Strock² and Thomas P. McCutcheon PUBLISHED AUGUST 5, 1931 **RECEIVED APRIL 24, 1931**

Introduction

The recent work of V. M. Goldschmidt on crystal chemistry has shown that crystal structure is determined by the relative numbers, size and deformability of the constituent particles.⁸ These results are based largely on x-ray investigation, but deal primarily with relatively simple compounds. The structure of a compound consists of an interpenetration of a definite anion and cation arrangement, whose mutual influence on each other determines the final structure of the compound. A given cation structure is expanded by the introduction of various anions, but this expansion has a limit, at which the fundamental cation arrangement alters. The substitution of various cations similarly influences the structure of the anion.

The cation of a complex cobaltammine must represent the largest and most determining part of the final structure of compounds containing this cation in combination with a simple anion. The structure of compounds of

¹ This paper is a thesis submitted to the Faculty of the Graduate School of the University of Pennsylvania in partial fulfilment of the requirements for the degree of Doctor of Philosophy.

² Acknowledgment is made to the George Leib Harrison Foundation of the University of Pennsylvania for fellowships granted for 1929-1930 and 1930-1931.

³ V. M. Goldschmidt, Skrifter Norske Videnskap. Akad. Oslo, 1926, No. 2; ibid., 1926, No. 8; Naturwissenschaften, 14, 477 (1926); Trans. Faraday Soc., 25, 253-83 (1929).

Aug., 1931 CRYSTALLINE FORM OF SOME NEW COBALTAMMINES 2853

this type is determined to a large extent by the cation, whose fundamental arrangement can be altered only with great difficulty. The axial ratio of suitable cobaltammines containing various simple anions should offer a means of determining the effect which an anion produces on a given cation structure. It must be remembered that when the structure of the cation does not represent a large portion of the final structure, and when the cation is not complex and heterogeneous, the axial ratio will be inadequate to measure the effect which the anion produces, as is seen from Fig. 1.

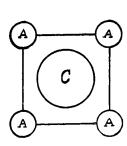


Fig. 1.—If the substitution of (C) increases the absolute dimension of the cell from 5×5 to 10×10 , the axial ratio is not changed.

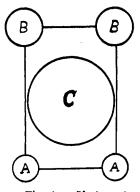


Fig. 1a.—If the substitution of (C) increases the absolute dimension of the cell from 4×10 to 8×12 , the axial ratio changes from 1:2.5 to 1:1.5.

Fig. 1.—Illustrating the type of atomic arrangement, whose expansion may be detected by axial ratio determinations.

The figures show that the effect of the anion can be measured by a determination of the axial ratios only in the second case, where various anions (C) expand the cation structure (AABB) to different extents in different directions depending upon the atoms involved in the expansion. Only x-ray measurements will ascertain the absolute expansion in either of the above cases, but any irregular expansion in different directions may be detected in the axial ratios as determined by geometrical crystallography. The acido cobaltammines are compounds of the type shown in Fig. 1a, and should be well suited for testing this view. The introduction of various anions will not produce any regular differences on the crystalline form of the compound if the new anion causes a change in structural type to occur. However, the structural type of the compounds reported in this paper appears to be the same, and regular differences in the crystalline form should be and are observed.

Experimental

Preliminary work showed that compounds in the oxalato series were very stable and could be obtained in measurable crystals; therefore, several oxalato tetrammines were prepared, analyzed and their crystalline form determined. None of the compounds studied, except the perchlorate, has been previously described; therefore their methods of preparation and properties are included in this paper.

Preparation of Compounds.—Oxalato tetrammine cobalti sulfate was first prepared by the method of Schramm, and this was used to prepare the other compounds in the oxalato series.⁴

1. Oxalato Tetrammine Cobalti Dichromate.—A saturated solution of potassium dichromate at 30 to 40° is added slowly and with stirring to a saturated solution of the oxalato sulfate. A few drops of acetic acid or a little ammonium acetate is added to the oxalato sulfate solution to prevent decomposition. A bright orange-red precipitate is formed, which is filtered off at once, washed with cold water and alcohol, then dried in the air. The precipitate is a mass of minute but perfect crystals.

	Composition	$\begin{bmatrix} C_2O_4\\ C_0(NH_3)_4 \end{bmatrix}_2 Cr_2O_7 \cdot H_2O$	
Constituen		Calcd., %	Found, %
Cr		15.66	15.69
Co		17.76	18.21
NH_3		20.513	20.55
H_2O		2.712	2.71
C_2O_4		Not determin	ned

The salt was found to be more soluble in a solution of ammonium acetate than in water. Since a more concentrated solution of the salt could be obtained in ammonium acetate than in water, this was used as a means of obtaining crystals suitable for measuring. The following procedure was followed. A 5 to 30% solution of ammonium acetate was carefully saturated with the salt at 40° . The excess salt was removed, and the saturated solution was allowed to cool very slowly (fifteen hours) down to room temperature while immersed in a large thermostat. This produced many small, but extremely perfect, deep ruby-red crystals. The crystals were always distorted when the concentration of the ammonium acetate was above 30 to 40%. The composition of the recrystallized and precipitated salt was found to be the same on analysis, showing that the treatment with ammonium acetate did not alter the composition of the salt.

2. Oxalato Tetrammine Cobalti Chromate.—All attempts to prepare this salt by the direct action of potassium chromate upon oxalato sulfate failed, but a small amount of acetic acid present caused the slow formation of the dichromate. When a small amount of ammonium carbonate was present no reaction occurred, and on evaporation the reactants were deposited unchanged. It was found that when the orange-red oxalato dichromate was boiled with ammonium carbonate it was transformed to a salt of a more nearly pure red color. An excess of the oxalato dichromate was then boiled with ammonium carbonate at 40°. By slowly cooling this solution as described above, perfect deep red crystals were obtained which proved to be the oxalato chromate. Therefore even though the chromate cannot be made directly, it can be obtained by crystallizing the dichromate from ammonium carbonate.

⁴ Schramm, Z. anorg. Chem., 180, 179 (1929).

$$\begin{bmatrix} C_2O_4\\ Co(NH_3)_4 \end{bmatrix}_2 Cr_2O_7 \cdot H_2O \xrightarrow{Ammonium acetate} Crystals of same \\ \begin{bmatrix} C_2O_4\\ Co(NH_3)_4 \end{bmatrix}_2 Cr_2O_7 \cdot H_2O \xrightarrow{Ammonium} \begin{bmatrix} C_2O_4\\ Co(NH_3)_4 \end{bmatrix}_2 CrO_4$$

From several ammonia determinations the composition of the chromate was found to correspond to the formula written above. The ammonia required by the formula is 24.92% and the average found from four determinations was 24.94%.

3. Carbonato Tetrammine Cobalti Dichromate.—A saturated solution of potassium dichromate at 30 to 40° is added to a solution of carbonato sulfate at 60° in the presence of a little ammonium acetate. The mixture is stirred vigorously under running water, cooled quickly and filtered at once. The filtrate after removing the precipitate, and frequently even before, turns very dark brown in color, and on standing deposits crystals of similar color. These crystals could not be obtained pure for analysis. If the carbonato sulfate solution is not completely saturated, and if the potassium dichromate solution is much above 40° and also unsaturated, no precipitate will form, but the solution turns at once dark brown in color. The bright red salt changes to this dark brown substance on standing in water solution, acetic acid, ammonium acetate, potassium and ammonium dichromate, and most attempts to recrystallize it formed this brown solution.

		CO ³	
	Composition	$\begin{bmatrix} CO_3 \\ CO(NH_3)_4 \end{bmatrix}_2 Cr_2O_7$	
Constituent		Calcd., %	Found, %
Cr		17.62	17.63
NH_3		23.08	23.00
Co		19.98	20.79
CO3		Not de	termined

The carbonato dichromate could not be crystallized, since all solutions of the salt change in composition before crystals form.

4. Carbonato Tetrammine Cobalti Chromate.—A solution of ammonium carbonate of almost any strength is saturated with the carbonato dichromate at 30 to 40° and allowed to stand. Large individual crystals deposit on cooling which are deep red in color.

	L co ³ J	
	Composition $[Co(NH_3)_4]_2CrO_4H_2O$)
Constituent	Calcd., %	Found, %
Cr	10.23	10.17
\mathbf{NH}_3	26.81	26.76
Co	23.21	23.98
H_2O	3.54	3.45
CO3	Not detern	nined

As in the oxalato series the chromate could not be prepared directly, but was obtained by crystallizing the dichromate from ammonium carbonate.

5. Oxalato Tetrammine Cobalti Chlorate.—This salt, not previously described, was prepared in order to study the crystalline form of a compound containing the oxalato cation combined with a univalent anion. Oxalato sulfate was treated with the calculated quantity of barium chlorate, the barium sulfate was filtered out, and the oxalato chlorate crystallized from the filtrate in measurable crystals after several days. The cobalt found in these crystals was 19.92%, and the cobalt required by the formula is

$$19.83\% \begin{bmatrix} C_2O_4 \\ C_0(NH_3)_4 \end{bmatrix} CIO_3.$$

6. Oxalato Tetrammine Cobalti Perchlorate.—This salt was prepared by Brönsted, and used by him in his studies on solubility. It forms readily on mixing saturated solutions of ammonium perchlorate and oxalato sulfate. Measurable crystals were obtained Γ C₂O₄ \neg

by slowly cooling an aqueous solution of the salt: $[Co(NH_3)_4]ClO_4H_2O$. Cobalt found, 17.78%; calcd., 17.74%.

7. Carbonato Tetrammine Cobalti Perchlorate.—This salt was prepared by mixing solutions of ammonium perchlorate and oxalato sulfate. The crystals were more difficult to obtain in measurable form, but were not investigated since other salts in this

series could not be crystallized. $\begin{bmatrix} CO_3\\ Co(NH_3)_4 \end{bmatrix}$ ClO₄: Cobalt found, 20.69%; calcd., 20.59%.

Remarks on the Oxalato Tetrammine Ion

Solutions of salts containing a complexly bound acido group usually undergo hydrolysis, whereby a water molecule is exchanged for the acido group. The oxalato and the carbonato tetrammine ions show a marked difference in this respect. The carbonato dichromate changes 'to the diaquo compound rapidly, but the chromate ions which are produced in the hydrolysis of the dichromate group immediately replace the water molecules from the complex, so that the result of the hydrolysis of the unstable carbonato group is the formation of a chromato complex compound, which is the cause of the dark brown solutions previously mentioned. Briggs⁵ has prepared compounds of this series by reactions involving the replacement of water by the CrO_4^{--} group.

Oxalato dichromate is very different from the carbonato dichromate, and hydrolyzes, producing the brown chromato compound only to a small extent after several days. Lamb has shown that the carbonato tetrammine base is as highly ionized as the alkali bases.⁶ The presence of the carbonato ion in solution appears to favor the formation of hydroxyl ions, which in turn produces a high concentration of chromate ions when the carbonato dichromate is dissolved in water. These chromate ions either replace the CO_3 directly or replace the water molecule which had previously replaced the CO₃ group. Lamb did not determine the strength of the oxalato tetrammine base, so that we can make no prediction as to whether the oxalato tetrammine ion will favor hydroxyl-ion formation. From the behavior of oxalato dichromate solutions, it appears that very few chromate ions are This would indicate that the oxalato ion favors hydrogen-ion forformed. mation. Solutions of oxalato dichromate do not change to the chromato compound, either because of the failure of the oxalato group to be replaced by water, or because the oxalato complex prevents the formation of chromate ions from the dichromate group. In the event that the aquo compound is formed there is no evidence that the dichromate group becomes com-

⁵ Briggs, J. Chem. Soc., 115, 67 (1919); 685 (1929).

⁶ Lamb and Yngve, THIS JOURNAL, 43, 2352 (1921).

plexly bound as does the chromate group. Rây and Sarkar have described a compound which contains a complexly bound Cr_2O_7 group, but this has a very complex structure and is not comparable to the type of compounds considered here.⁷

Solubility of the Salts in Water

The solubility was determined by the same method used by Brönsted.8

Cobalt tetrammines	Solubility at 25° G. of salt per 100 cc. of satd. soln.	Specific gravity at 25°
Oxalato sulfate	0.7712	
Oxalato dichromate	.0734	2.0995
Oxalato chromate	.3156	1.9790
Oxalato perchlorate	.4403 (At 20°,	
	Brönste	ed)
Carbonato sulfate	6.061	
Carbonato dichromate	Decompose rapidly in	2.0300
	water and could not be	
Carbonato chromate	determined	2.0135

The composition of the salts was ascertained by determining the constituents in the following way. Chromium was determined by the lead chromate method, ammonia by the method of Brönsted, and cobalt by the nitroso beta naphthol method, not igniting the precipitate in hydrogen.

Crystallography

Crystals of the compounds studied were obtained suitable for measuring by methods already mentioned. They were, as desired, very small and did not exceed 0.1 to 0.2 mm. in their greatest dimension. A crystal which was typical of the compound was selected and accurately sketched. This sketch was used to make the final drawing from the measured angles, so that each drawing would be a faithful portrait of the compound and not a drawing of the ideal form. A small piece of wax, fastened on a spindle, was drawn out to a thin thread, which was then attached to a suitable point on the crystal. The crystal when mounted on the wax was placed on a Goldschmidt two-circle goniometer and measured with a prominent zone vertical.

The average values from the measurement of a number of crystals were used to calculate the crystallographic elements. These elements and symbols were calculated by the method of Victor Goldschmidt from a gnomonic projection.⁹ Care was taken to select the unit face so that

⁸ J. N. Brönsted and Agnes Petersen, THIS JOURNAL, 43, 2265 (1921).

⁹ A series of papers edited by Edgar T. Wherry and Charles Palache describes these calculations and covers the important bibliography of the subject [Am. Mineral., 5, Nos. 2-12 (1920)].

⁷ Rây and Sarkar, J. Indian Chem. Soc., 1, 289 (1925).

similar faces on different compounds would have similar indices, and so that the orientation of the various crystals would be comparable. The same plan was followed in assigning letters to the faces.

The crystal tables which follow contain the measurements, calculations and results of the compounds studied. The figures are reproductions of drawings made from the gnomonic projections of the average values obtained, and are in all cases real portraits and not drawings of the ideal crystal, as Victor Goldschmidt insists is the best procedure.

CRYSTAL TABLE NO. I

Oxalato Tetrammine Cobalti Dichromate

Measurement of a typical crystal, see Figs. 2 and 3

		Г	C_2	D₁]				H_0	= 144°1	6'
		LCo	o(NH ₃	$_{4}]_{2}Cr_{2}O_{7}$	H ₂ O, Mon	oclinic.		V_0	= 34°5	6'
No.	Let.	Syı G.	nbols M.	H^{Meas}	sured V	$V - V_0^{\text{Orien}}$	tated H − H₀	Calcd. φ	Av, top φ	and bot. P
1	с	0	001	141 °44′	124°56'	90°00′	2°32′	90°00′	89°59′	2°35′
4	р	$\frac{1}{2}$	112	186 29	$176\ 29$	$143 \ 33$	$42 \ 13$	$38 \ 27$	38 26	$42 \ 42$
5	р	$\frac{1}{2}$	112	186 57	73 20	$38 \ 14$	$42 \ 41$	38 14	$38 \ 26$	$42 \ 42$
17	ē	$\overline{1}0$	$\overline{1}01$	190 54	$305 \ 27$	$270 \ 31$	$46 \ 38$	$\overline{9}0$ 31	$\overline{9}0$ 31	$46 \ 38$
2	f	01	011	$199 \ 44$	$213\ 16$	$178\ 20$	$55\ 28$	1 40	$1 \ 47$	$55 \ 33$
3	f	01	011	$199 \ 45$	36 58	$2 \ 02$	55 29	$2 \ 02$	$1 \ 47$	$55 \ 33$
16	g	1	111	$205 \ 31$	72 23	$37 \ 27$	61 15	$37 \ 27$	$37 \ 45$	61 11
14	\overline{h}	$\overline{2}0$	$\overline{2}01$	209 01	$305 \ 06$	$270 \ 10$	$65 \ 45$	$\overline{9}0\ 10$	90 10	64 45
15	h	20	201	$209 \ 44$	$125 \ 01$	$90 \ 05$	$65 \ 28$	90 05	90 01	$65 \ 25$
8	b	0∞	010	$234 \ 21$	214 54	$179\ 58$	$90 \ 05$	$0 \ 02$	00 00	89 58
12	b	∞ 0	010	$234 \ 16$	35 09	0 13	90 00	$0 \ 13$	00 00	89 58
7	m	∞1	110	$234 \ 03$	$251 \ 11$	$216\ 15$	$89 \ 47$	$36 \ 15$	36 36	89 58
9	m	∞1	110	$234\ 18$	$178\ 25$	$143 \ 29$	$90 \ 02$	$36 \ 31$	36 36	89 58
11	m	∞1	110	234 20	70 56	36 00	90 04	36 00	$36 \ 36$	89 58
13	m	∞1	110	$234 \ 14$	357 57	$323 \ 01$	89 58	36 59	36 36	89 58
6	a	∞0	100	234 00	305 00	$270 \ 04$	89 44	90 04	90 01	89 58
10	a	∞0	100	$234 \ 19$	$124\ 58$	90 02	90 03	$90 \ 02$	90 01	89 58

CRYSTAL TABLE NO. II

Oxalato Tetrammine Cobalti Dichromate

Results and table of forms

	$\begin{bmatrix} C_2 O_4 \\ NH_3 \end{bmatrix}_2 Cr_3$	2O7.	H₂O,	Mono	clinic		142 of 10 c			faces fr veraged	-
Form	Symbol, M		φ ^I	Angles	ρ	Form	Symbol. A	1	φ Ar	igl es	ρ
с	001	90	°00′	2	°35′	h	201	90	°00′	65°	°35′
р	112	38	40	42	43	$\overline{\mathbf{h}}$	$\overline{2}01$	90	00	64	45
ē	101	$\overline{9}0$	07	46	35	ъ	010	00	00	89	56
f	011	1	44	55	34	m	110	36	32	89	58
g	111	37	27	61	27	a	100	90	06	90	00

Forms (p), (f) and (\overline{h}) uniformly excellent and used to calculate p_0 and q_0 .

Crystai	, Table No. II	(Concluded)
	Polar Element	rs
$\epsilon' = 0.04512$	$h_0 = 1.0000$	$q_0 = 1.4484$
$p'_0 = 1.0683$	$\epsilon = 0.04507$	$r_0 = 1.0000$
$q'_0 = 1.4499$	$p_0 = 1.0672$	$\mu = 87^{\circ}25'$
	Linear Elemen	TS
a : b 1.3586:1:1		$\beta = 92°35'$

The legend used is the usual one of Goldschmidt. (ρ) is the angle of the face normal from the vertical pole or may be thought of as the co-latitude (φ) is the angle from a suitable horizontal meridian, and may be thought of as the longitude.

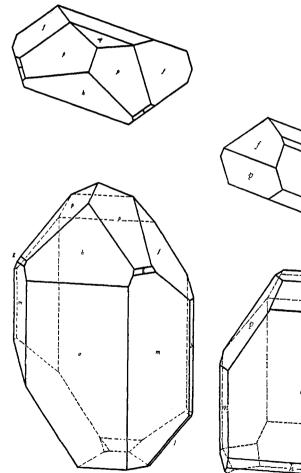


Fig. 2.—Oxalato tetrammine cobalti dichromate, monoclinic (hemihedral habit).

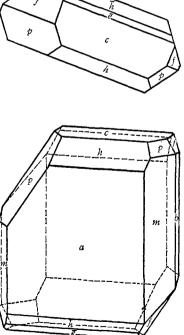


Fig. 3.—Oxalato tetrammine cobalti dichrom**a**te, monoclinic (regular habit).

CRYSTAL TABLE NO. III

				-		LTI CHROMATH stal, see Fig. 4	-	
	Г	C₂O	٦		•	$H_0 =$	144°14′	
	LCo	o(NH₃)	₄_]₂CrC	4, Triclinic		$V_0 =$	(see below))
No.	Let,	Sym G.	bols M.	H Meas	ured V	$V - V_0$	Av. angles cry (φ)	from 12 stals (p)
1	с	0	001	176°18′	43°48′	89°40′	89°40′	32°25′
2	ō	$\frac{1}{2}$ $\overline{1}$	$\overline{12}1$	188 17	136 37	$182 \ 14$	$\overline{2}$ 14	$44 \ 25$
3	h	20	201	Not on th	is crystal		$90 \ 05$	73 23
7	0	<u>1</u>	$\overline{1}21$	$185 \ 25$	313 13	357 58	$\overline{1}77$ 58	$44 \ 45$
20	ē	10	$\overline{1}01$	$179\ 24$	$224 \ 26$	$270 \ 40$	$\overline{90}$ 40	$35 \ 12$
4	\mathbf{M}	∞ī	110	$234 \ 10$	100 38	$146 \ 00$	$146 \ 00$	90 00
5	a	∞0	100	$234 \ 30$	44 23	$90 \ 15$	$90 \ 15$	90 00
6	m	∞1	110	$234 \ 13$	348 50	34 19	34 19	90 00
8	\mathbf{M}	∞ī	$1\overline{1}0$	$234 \ 10$	$281 \ 00$	326 00	$146 \ 00$	90 00
9	a	∞0	100	$234\ 28$	$224\ 18$	$270\ 15$	$90 \ 15$	90 00
10	m	∞1	110	$234 \ 15$	167 07	214 19	34 19	90 00

No actual values for V_0 were obtained, but the (V) values were orientated by getting the best average angle between like faces from twelve different crystals. Face (5) was then set at 90° and from the angles obtained all other faces were orientated with respect to this one. The plot of these values (V') showed that it was necessary to move all these values clockwise 0.15' in order that zone (0-01) be parallel to the horizontal meridian. This gave at once the necessary known terms to calculate the polar elements. This procedure was necessary because no (010) face was present on any of the crystals examined. Even though these crystals appeared to be very brilliant, they gave many blurred and ghost signals. For this reason the calculations were made entirely from averaged values. The compound was at first thought to be monoclinic, and faces 5, 1, 3, 20 and 9 to be in the plane of symmetry. Because of the blurred signals the variation of the measurements from monoclinic values were within the limit of reading error. That the crystal was triclinic was demonstrated by examining it with polarized light. With crossed nicols an extinction angle of 8° was obtained for all faces whose face poles were parallel with the supposed symmetry plane. Hence the measurements were averaged and calculated as triclinic. The symmetry of the crystal is very close to monoclinic since angles alpha and gamma are near 90°.

A special form table for the oxalato chromate is not included, since almost each face is a separate form. The last two columns of Table III give the average angles from the measurement of twelve different crystals instead of the angles from one typical crystal for, as mentioned above, the signals from many of the faces were so poor that the calculations had to be made solely from average values. Reference to Fig. 4 will show the prominence of the forms. The results are listed below.

POLAR ELEMENTS

$\begin{array}{l} x_{0}' = 0.6350 \\ y_{0}' = 0.00203 \\ p_{0}' = 1.3434 \\ q_{0}' = 0.9864 \\ h_{0} = 1.0000 \end{array}$	$y_0 = p_0 = q_0 =$	0.53607 0.00172 1.1341 0.8326 1.0000	$v = 90^{\circ}15'$ $\lambda = 8954$ $\mu = 5735$ $\varphi_0 = 8945$ $\rho_0 = 3225$
<i>a</i> : <i>b</i> : <i>c</i> 1.5767 : 1 : 1.3434	Linear	ELEMENTS $\alpha = 90°16'$ $\beta = 122°26'$	$\gamma = 89°30'$

Crystal Table No. IV

		02	KALATO	TETRAMM	ine Cobai	TI CHLORATE		
		Me	easuren	ient of a ty	ypical crys	tal, see Fig. 5		
	Г	C_2O_4	٦			$H_0 = 00$	°00′	
	LCo	(NH ₃) _{4.}	_C1O₃,	Triclinic		$V_0 = 148$	°07′	
	. .	Sym			sured	Orientated	Calcul	ated
No.	Let.	G.	м.	H	V	$V - V_0$	φ	P
1	b	0	010	90°00′	328°07′	180°00′	0°00′	90°00′
2	n	11	$1\overline{1}0$	90 00	$291 \ 44$	$142 \ 37$	$142 \ 37$	90 00
3	t	∞11/2	$2\overline{1}0$	90 00	$273 \ 11$	$125 \ 04$	$125 \ 04$	90 00
4	a	∞0	100	90 00	$238 \ 11$	90 04	90 04	90 00
5	r	∞1≟	210	90 00	$203 \ 05$	55 28	$55 \ 28$	90 00
6	m	∞1	110	90 00	$185 \ 03$	36 56	35 56	90 00
7	n	∞11	110	90 00	$111 \ 46$	323 39	$142 \ 39$	90 00
8	t	∞11/2	$2\overline{1}0$	90 00	$92 \ 41$	304 34	$124 \ 34$	90 00
9	a	∞0	100	90 00	$57 \ 49$	$269 \ 42$	$89 \ 42$	90 00
10	r	∞1 }	210	90 00	$23 \ 37$	$235 \ 30$	$55 \ 30$	90 00
11	m	∞1	110	90 00	4 29	$216\ 20$	36 22	90 00
12	P	12	$\overline{11}2$	$41 \ 36$	$359\ 48$	$211 \ 41$	$\overline{3}1$ 41	$41 \ 36$
13	Р	1/2	$\overline{1}12$	$42 \ 02$	$115 \ 44$	$327 \ 37$	$\overline{1}47$ 35	$42 \ 02$
14	с	0	001	4 58	236 01	87 54	87 54	458

CRYSTAL TABLE NO. V

Oxalato Tetrammine Cobalti Chlorate Results and table of forms

			results and	table of 10	11113		
	Г	C_2O_4			Avera	ge of 80 best	t faces
	LC0	(NH₃)₄_Cl	O ₃ , Triclinic		fron	n six crystal:	s
		Ang	gles		Symbol.	Angle	s
Form	Symbol, M	φ	ρ	Form	M	φ	ρ
a	100	89°58′	90°00′	r	210	55°34′	90°00′
b	010	00 00	90 00	t	$2\overline{1}0$	$124 \ 29$	90 00
с	001	$87 \ 45$	4 58	P	111	$\overline{3}1 \ 46$	$41 \ 36$
m	110	$36\ 52$	90 00	Р	ī11	1 47 35	$42 \ 08$
n	110	$143 \ 20$	90 00				
			POLAR]	Elements			
	$x'_0 = 0$.08683	$p'_0 =$	1.1260	(φ_0)	= 87°45′	
	$y'_{0} = 0$.00341	$q'_{0} =$	1.5185	(ρ ₀)	= 4°58′	
	$x_0 = 0$.08651	⊅ ₀ =	1.1218	(λ)	= 89°48′	
	$y_0 = 0$. 00340	$q_0 =$	1.5128	(µ)	≈ 85°02′	
	$h_0 = 1$. 0000	ro ==	1.0000	(v)	= 89°58′	

2861

CRYSTAL TABLE NO. V (Concluded)

Linear Elements

a:*b*:*c* 1.3536:1:1.5185 $(\alpha) = 90^{\circ}12'$ $(\gamma) = 79^{\circ}26'$ $(\beta) = 98^{\circ}52'$

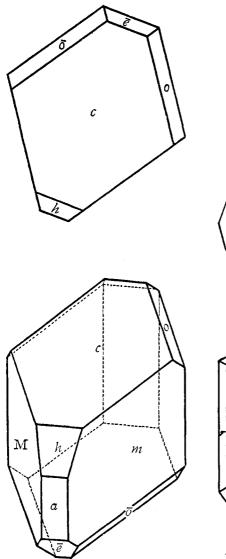


Fig. 4.—Oxalato tetrammine cobaltⁱ chromate, triclinic.

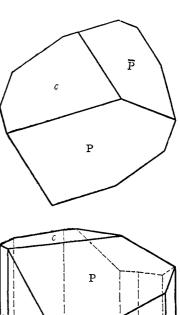
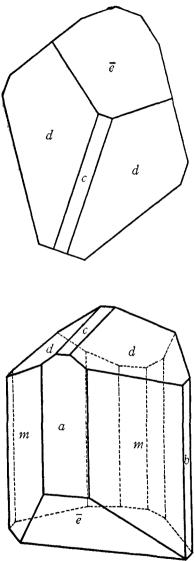


Fig. 5.—Oxalato tetrammine cobalti chlorate, triclinic (drawn with b front).


CRYSTAL TABLE NO. VI

OXALATO TETRAMMINE COBALTI PERCHLORATE Results and table of forms

The number of forms developed on this compound is so small that all the necessary data can be included in one table.

				ue table.					
	Г	C_2							
	LC	$o(NH_i)$	3)₄_C10	$O_4.H_2O, M_0$	onoclinic				
Form		bol, M		Angles		Form Sy		Angles	
	-	00, M	<i>φ</i>	, 90°00		-	•		ፆ °06′
a 1			90°00			ē	-		
b		10	00 00	90 00		m		26 90	
c		01	90 00	9 58		r	210 52	45 90	00
d		12	13 15	35 57					
Se	e Fig.	6 for	face d	evelopmen	t.				
]	Polar Ele	MENTS			
		€' = (). 1740		$\epsilon = 0.1$	714			
	Þ	% ≕ (.4791		$p_0 = 0.4$	719	μ ==	80°02′	
	- q	°́ ≈ 1	4634		$q_0 = 1.44$	4 14			
	ĥ	0 == 1	. 0000		$r_0 = 1.00$	000			
					Linear El	EMENTS			
				a:b:c		$\beta = 99$	°58′		
			1.	5508:1:1	.4634	•			
				0	.	- 37- 3777			
			a		STAL TABL		a		
					TRAMMINE				
	_	-		surement	of a typica	l crystal,	•	*****	
			03				•	= 234°10′	
	LC	℃(NH	3)4 2C	rO4, Triclii	nic		$V_0 =$: (see below)
								~	
No	Tat	Syn	ıbol	Measu			ntated 77 +	Calcul	ated
No, 1(18)	Let.	Syn G.	ibol M.	Meası H	V	<i>V</i> -	V +	φ	ated P
1(18)	с	Syn G. 0	nbol M. 001	Meası <i>H</i> 165°17'	v 3°50′	v− 91 °38′	v+ 88°22′	φ 88°22′	ated م 21°07'
1(18) 2(17)	c e	Syn G. 0 10	1bol M. 001 101	Measu H 165°17' 204 16	v 3°50′ 3 39	√- 91°38′ 91 27	V+ 88°22' 88 33	φ 88°22′ 88°33	ated م 21°07′ 60 04
$1(18) \\ 2(17) \\ 3(16)$	c e ē	Syn G. 0 10 10	^{аbol} М. 001 101 101	Measu H 165°17' 204 16 188 54	V 3°50' 3 39 185 05	<i>v</i> - 91°38′ 91 27 271 12	V+ 88°22' 88 33 268 48	φ 88°22' 88 33 88 48	ated م 21°07′ 60 04 44 23
1(18) 2(17) 3(16) 4	c e ē G	Syn G. 10 10 11	1601 M. 001 101 101 101 111	Measu H 165°17′ 204 16 188 54 201 00	V 3°50' 3 39 185 05 132 16	<i>v</i> - 91°38′ 91 27 271 12 219 30	V+ 88°22' 88 33 268 48 320 30	φ 88°22' 88 33 <u>8</u> 8 48 140 30	eated 21°07' 60 04 44 23 56 58
1(18) 2(17) 3(16) 4 6(13)	c e ē G f	Sym G. 10 10 11 01	1501 M. 001 101 101 111 011	Measu H 165°17′ 204 16 188 54 201 00 195 49	V 3°50' 3 39 185 05 132 16 230 35	v- 91°38' 91 27 271 12 219 30 17 46	V+ 88°22' 88 33 268 48 320 30 162 14		21°07′ 60 04 44 23 56 58 51 31
$1(18) \\ 2(17) \\ 3(16) \\ 4 \\ 6(13) \\ 20(15)$	c ē G Ī P	$\begin{array}{c} \text{Sym}\\ \text{G.}\\ 0\\ 10\\ \overline{10}\\ \overline{11}\\ 0\overline{1}\\ 1\\ 0\overline{1}\\ \overline{\frac{1}{2}}\end{array}$	M. 001 101 101 111 011 112	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36	V 3 °50′ 3 39 185 05 132 16 230 35 246 37	<i>v</i> - 91°38′ 91 27 271 12 219 30 17 46 357 07	V+ 88°22' 88 33 268 48 320 30 162 14 205 53	\$\$\$22' \$\$33 \$\$8 43 \$\$40 30 162 14 \$\$25 53\$	21°07′ 60 04 44 23 56 58 51 31 34 23
$1(18) \\ 2(17) \\ 3(16) \\ 4 \\ 6(13) \\ 20(15) \\ 21(14)$	c e ē G f P G	$ Sym G. 0 10 10 11 01 \frac{1}{2}11$	M. 001 101 101 111 011 112 112 111	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46	V 3 °50' 3 39 185 05 132 16 230 35 246 37 234 18	<i>v</i> - 91°38' 91 27 271 12 219 30 17 46 357 07 321 53	V+ 88°22' 88 33 268 48 320 30 162 14 205 53 218 07	\$\$\vee{88} 22' 88 33 \ovee{88} 33 \ovee{88} 48 \ovee{140} 30 162 14 \ovee{25} 53 \ovee{38} 07	eated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45
1(18) 2(17) 3(16) 4 6(13) 20(15) 21(14) 7	c e ē G f P G b	Sym G. 0 10 $\overline{10}$ $\overline{11}$ $0\overline{1}$ $\frac{1}{2}$ 1 0 ∞	$\begin{array}{c} \text{abol} & \text{M}, \\ 001 \\ 101 \\ \overline{1}01 \\ \overline{1}01 \\ \overline{1}11 \\ 0\overline{1}1 \\ \overline{1}12 \\ \overline{1}\overline{1}1 \\ \overline{1}11 \\ 010 \end{array}$	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46 234 23	V 3 °50' 3 39 185 05 132 16 230 35 246 37 234 18 92 07	<i>v</i> - 91°38′ 91 27 271 12 219 30 17 46 357 07 321 53 180 00	V+ 88°22' 88 33 268 48 320 30 162 14 205 53 218 07 0 00	φ 88°22' 88 33 $\overline{88}$ 48 $\overline{140}$ 30 162 14 $\overline{25}$ 53 $\overline{38}$ 07 00 00	ated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45 90 00
1(18) 2(17) 3(16) 4 6(13) 20(15) 21(14) 7 8	с е ē G f P G b ш	$ \begin{array}{c} \text{Sym}\\ \text{G.}\\ 0\\ 10\\ \overline{10}\\ \overline{11}\\ 0\overline{1}\\ 0\overline{1}\\ \frac{1}{2}\\ 1\\ 0\\ \infty \\ 1 \end{array} \right) $		Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46 234 23 234 13	V 3 °50' 3 39 185 05 132 16 230 35 246 37 234 18 92 07 44 48	<i>v</i> - 91 °38' 91 27 271 12 219 30 17 46 357 07 321 53 180 00 132 33	V+ 88°22' 88 33 268 48 320 30 162 14 205 53 218 07 0 00 47 27	φ 88°22' 88 33 $\overline{88}$ 48 $\overline{140}$ 30 162 14 $\overline{25}$ 53 $\overline{38}$ 07 00 00 47 27	ated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45 90 00 90 00
1(18) 2(17) 3(16) 4 6(13) 20(15) 21(14) 7 8 9	c e ē G f P G b m M	$ Sym G. 0 10 10 11 01 \frac{1}{2} 1 0 \infty 1 \infty 1 $	$\begin{array}{c} {}^{\text{hbol}} \\ \text{M.} \\ 001 \\ 101 \\ \overline{101} \\ \overline{101} \\ \overline{111} \\ 0\overline{11} \\ \overline{112} \\ \overline{111} \\ 010 \\ 110 \\ 1\overline{10} \\ 1\overline{10} \end{array}$	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46 234 23 234 13 234 17	V 3 °50' 3 39 185 05 132 16 230 35 246 37 234 18 92 07 44 48 321 38	<pre></pre>	V+ 88°22' 88 33 268 48 320 30 162 14 205 53 218 07 0 00 47 27 130 44	φ 88°22' 88 33 $\overline{88}$ 48 $\overline{140}$ 30 162 14 $\overline{25}$ 53 $\overline{38}$ 07 00 00 47 27 130 44	ated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45 90 00 90 00 90 00
1(18) 2(17) 3(16) 4 6(13) 20(15) 21(14) 7 8 9 10	c e ē G f P G b m M b	$ \begin{array}{c} \text{Sym}\\ \text{G.}\\ 0\\ 10\\ \overline{10}\\ \overline{11}\\ 0\overline{1}\\ \frac{1}{2}\\ \overline{1}\\ 0\\ \infty \\ 1\\ \infty \\ 0\\ \infty \end{array} $	$\begin{array}{c} {}^{\rm abol} \\ {\rm M}, \\ 001 \\ 101 \\ \overline{1}01 \\ \overline{1}11 \\ 0\overline{1}1 \\ \overline{1}12 \\ \overline{1}\overline{1}1 \\ \overline{1}12 \\ \overline{1}\overline{1}1 \\ 010 \\ 110 \\ 1\overline{1}0 \\ 010 \end{array}$	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46 234 23 234 13 234 17 234 08	V $3^{\circ}50'$ $3^{\circ}39$ $185^{\circ}05$ $132^{\circ}16$ $230^{\circ}35$ $246^{\circ}37$ $234^{\circ}18$ $92^{\circ}07$ $44^{\circ}48$ $321^{\circ}38$ $272^{\circ}22$	<pre></pre>	V+ 88°22' 88 33 268 48 320 30 162 14 205 53 218 07 0 00 47 27 130 44 180 00	φ 88°22' 88 33 88 48 140 30 162 14 25 53 38 07 00 00 47 27 130 44 00 00	ated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45 90 00 90 00 90 00 90 00
1(18) 2(17) 3(16) 4 6(13) 20(15) 21(14) 7 8 9 10 11	с е ē G f P G b m M b m	$ \begin{array}{c} \text{Sym}\\ \text{G.}\\ 0\\ 10\\ \overline{10}\\ \overline{11}\\ 0\overline{1}\\ 0\\ \frac{1}{2}\\ \overline{1}\\ 0\\ \infty\\ 1\\ 0\\ \infty\\ 0\\ 1 \end{array} \right) $	$\begin{array}{c} abol \\ M. \\ 001 \\ 101 \\ \overline{101} \\ \overline{101} \\ \overline{111} \\ 0\overline{11} \\ \overline{112} \\ \overline{111} \\ 010 \\ 110 \\ 1\overline{10} \\ 010 \\ 110 \\ 110 \end{array}$	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46 234 23 234 13 234 17 234 08 234 11	V 3 °50' 3 39 185 05 132 16 230 35 246 37 234 18 92 07 44 48 321 38 272 22 225 00	<pre></pre>	V+ 88°22' 88 33 268 48 320 30 162 14 205 53 218 07 0 00 47 27 130 44 180 00 227 27	$\begin{array}{c} & & \\ & 88 \\ & 88 \\ \hline 88 \\ & 33 \\ & 88 \\ \hline 88 \\ & 48 \\ \hline 140 \\ & 30 \\ & 162 \\ & 14 \\ \hline 25 \\ & 53 \\ & \hline 38 \\ & 07 \\ & 00 \\ & 00 \\ & 47 \\ & 27 \\ \hline 130 \\ & 44 \\ & 00 \\ & 00 \\ & 47 \\ & 27 \end{array}$	ated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45 90 00 90 00 90 00 90 00 90 00 90 00 90 00
1(18) 2(17) 3(16) 4 6(13) 20(15) 21(14) 7 8 9 10 11 12	с е ē G f P G b m M b m M	$ \begin{array}{c} \text{Sym} \\ \text{G}, \\ 0 \\ 10 \\ \overline{10} \\ \overline{11} \\ 0 \\ \overline{12} \\ 1 \\ 0 \\ \infty \\ 1 \\ \infty \\ 1 \\ \infty \\ 1 \\ \infty \\ 1 \\ 0 \\ \infty \\ 1 \\ 0 \\ \infty \\ 1 \\ 1 \\ 0 \\ 0 \\ \infty \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0$	$\begin{array}{c} {}^{abol} \\ M. \\ 001 \\ 101 \\ \overline{101} \\ \overline{101} \\ \overline{111} \\ 0\overline{11} \\ \overline{112} \\ \overline{111} \\ 010 \\ 110 \\ 1\overline{10} \\ 010 \\ 110 \\ 1\overline{10} \\ 1\overline{10}$	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46 234 23 234 13 234 17 234 08 234 11 234 05	V 3 °50' 3 39 185 05 132 16 230 35 246 37 234 18 92 07 44 48 321 38 272 22 225 00 140 35	<pre></pre>	$\begin{array}{c} v^+ \\ 88\ ^{\circ}22' \\ 88\ 33 \\ 268\ 48 \\ 320\ 30 \\ 162\ 14 \\ 205\ 53 \\ 218\ 07 \\ 0\ 00 \\ 47\ 27 \\ 130\ 44 \\ 180\ 00 \\ 227\ 27 \\ 310\ 44 \end{array}$	φ 88°22' 88 33 88 48 140 30 162 14 25 53 38 07 00 00 47 27 130 44 00 00 47 27 130 44	ated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45 90 00 90 00 90 00 90 00 90 00 90 00 90 00 90 00 90 00
1(18) 2(17) 3(16) 4 6(13) 20(15) 21(14) 7 8 9 10 11	с е ē G f P G b m M b m	$ \begin{array}{c} \text{Sym}\\ \text{G.}\\ 0\\ 10\\ \overline{10}\\ \overline{11}\\ 0\overline{1}\\ 0\\ \frac{1}{2}\\ \overline{1}\\ 0\\ \infty\\ 1\\ 0\\ \infty\\ 0\\ 1 \end{array} \right) $	$\begin{array}{c} abol \\ M. \\ 001 \\ 101 \\ \overline{101} \\ \overline{101} \\ \overline{111} \\ 0\overline{11} \\ \overline{112} \\ \overline{111} \\ 010 \\ 110 \\ 1\overline{10} \\ 010 \\ 110 \\ 110 \end{array}$	Measu H 165°17' 204 16 188 54 201 00 195 49 178 36 201 46 234 23 234 13 234 17 234 08 234 11	V 3 °50' 3 39 185 05 132 16 230 35 246 37 234 18 92 07 44 48 321 38 272 22 225 00	<pre></pre>	V+ 88°22' 88 33 268 48 320 30 162 14 205 53 218 07 0 00 47 27 130 44 180 00 227 27	$\begin{array}{c} & & \\ & 88 \\ & 88 \\ \hline 88 \\ & 33 \\ & 88 \\ \hline 88 \\ & 48 \\ \hline 140 \\ & 30 \\ & 162 \\ & 14 \\ \hline 25 \\ & 53 \\ & \hline 38 \\ & 07 \\ & 00 \\ & 00 \\ & 47 \\ & 27 \\ \hline 130 \\ & 44 \\ & 00 \\ & 00 \\ & 47 \\ & 27 \end{array}$	ated 21°07' 60 04 44 23 56 58 51 31 34 23 57 45 90 00 90 00 90 00 90 00 90 00 90 00 90 00

The ordinary methods for determining (V_0) could not be employed here. After plotting, faces (7) and (10) were found to be (010) and when correctly rotated should have a (φ) angle of zero and be at zero on the projection. The angles between all forms measured were determined and the values in each case averaged. By this means the best average angle between that form and (010) was found. This gave a set of vertical readings which

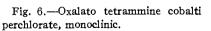
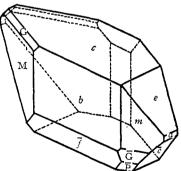



Fig. 7.—Carbonato tetrammine cobalti chromate, triclinic (drawn with b front).

are recorded in column (V^-) of Table VII. By examining the plot it was found that the negative end of the crystal had been measured and sketched. The (V^-) values, therefore, were adjusted to their complementary position.

G P C C C C C

Aug., 1931 CRYSTALLINE FORM OF SOME NEW COBALTAMMINES

The values in column (V^+) are the results of this readjustment, and from them the (φ) values were calculated.

CRYSTAL TABLE NO. VIII							
CARBONATO TETRAMMINE COBALTI CHROMATE							
Results and table of forms							
-	Angles					Angles	
Form	Symbol, 1		ρ	Form	M	φ	ρ
a	100	88°40′	90°00′	G	$\overline{11}1$	<u>3</u> 8°07′	57°45′
b	010	00 00	90 00	Ī	$0\overline{1}1$	$162 \ 41$	$51 \ 31$
с	001	88 22	$21 \ 07$	G f P	$\overline{11}2$	$\overline{2}5$ 53	$34 \ 23$
e	101	88 33	60 04	m	110	$47 \ 27$	90 00
ē	101	88 48	44 23	\mathbf{M}	110	130 44	90 00
G	111	$\overline{1}40$ 30	$56\ 58$	See figure for development of forms.			
POLAR ELEMENTS							
$x'_0 = 0.3718$ $p'_0 =$				1.3497	(φ_0 = 88°22	<u>,</u> /
$v_0 = 0.0104$			• •				
			1.			$(\rho_0) = 21^{\circ}07$	
$x_0 = 0.3632$				1.2592		τ) = 89°27	
		0.00967	-	1.1250		$\mu) = 68^{\circ}42$	
	$h_0 =$	1.0000	r 0 ==	1.0000	($\nu) = 88^{\circ}40$)'
LINEAR ELEMENTS							
		a :b:c		$(\alpha) = 90^{\circ}03$	5'	$(\gamma) = 91^{\circ}14$,
	0.95	589:1:1.519	97	$(\beta) = 111^{\circ}$	17'		

Conclusions

As anticipated, the crystalline form and habit of a compound was affected as one of the groups was substituted. It appears that the structural type of all the oxalato tetramine compounds studied is the same, because the symmetry of their crystalline forms bear simple relations to one another. If this is correct, then the deforming influence of the substituted anions upon the structure of the oxalato group may be stated as having the following increasing order: Cr₂O₇, ClO₄, ClO₃ and CrO₄.

From infra-red absorption data, Rawlins¹⁰ has suggested that in compounds of the type ABX, the AB portion of the compound may preserve a well-defined skeleton structure in various compounds as various atoms or groups are substituted for the X portion. Similarly, the oxalato tetrammines described in this paper may be given a type formula as follows-AXY. In the compounds described by Rawlins the two cations preserve a definite structure in various combinations. In the oxalato complexes, or in any acido ammonia complex, it is entirely possible that the AX portion of the molecule preserves a definite skeleton structure which is merely altered or deformed as various substitutions of (Y) are performed. This is merely another definition of a complex ion, and states that two atoms or groups which under some conditions exist as a single anion and cation are now combined in some way so that the combination acts as a definite new ion.

¹⁰ Rawlins, Trans. Faraday Soc., 25 283 (1929).

2865

Complex ions are usually considered in the same way as more simple ions, *i. e.*, to be more or less spherical. Pauling¹¹ has discussed the ionic radii of a few complex ions and their radius ratios. There is no literature which is opposed to assigning a definite skeleton structure to a complex ion of the type AX^+ , and indeed such a structure appears to exist. Quantitative verification of the exact effect of the substituted anion in these oxalato complexes will be possible only after an x-ray determination of their structural types and cell dimensions. If the structural type is not altered by the substitution of the anion, then, as stated in the introduction, the axial ratios of a series of compounds which contain a complex ion will be adequate to measure the effect produced by the substituted anion.

Summary

1. The following new compounds have been prepared and analyzed: the chromate, dichromate and chlorate of the oxalato tetrammine series of cobalt, also the chromate and dichromate of the carbonato series.

2. Crystals of all the above compounds, except the carbonato dichromate have been prepared. These crystals, in addition to the oxalato perchlorate, were measured and the crystalline forms determined.

3. The difficulty encountered in preparing the oxalato chromate suggests an interesting example of the manner in which affinity of ions for each other may limit their deforming influence.

4. It is suggested that the complex oxalato cobalti tetrammine ion, and other acido complexes, may have a definite skeleton structure in crystals containing this complex ion, and that the substitution of various anions merely alters the shape and dimensions of this structure.

Philadelphia, Pennsylvania

[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF THE OHIO STATE UNIVERSITY]

A PERIODIC ARRANGEMENT OF THE ATOMIC NUCLEI. THE PREDICTION OF ISOTOPES

BY HERRICE L. JOHNSTON

RECEIVED APRIL 29, 1931 PUBLISHED AUGUST 5, 1931

Interesting and suggestive regularities in the existence and abundance of mass numbers have been called to attention by various authors in recent years.¹ The most thorough tabulations of such empirical regularities are those of Harkins. The discovery of such relationships is useful not only in

¹¹ L. Pauling, This Journal, 49, 765 (1927).

¹ (a) Harkins, *ibid.*, **39**, 859 (1917); **42**, 1976 (1920); **43**, 1050 (1921); **45**, 1426 (1923); *Phil. Mag.*, **42**, 331 (1921); *Phys. Rev.*, **15**, 85 (1920); *J. Franklin Institute*, **195**, 554 (1923); *Chem. Reviews*, **5**, 371 (1928); (b) Beck, *Z. Physik*, **47**, 407 (1928); (c) Barton, *Phys. Rev.*, **35**, 408 (1930); (d) Latimer, THIS JOURNAL, **53**, 981 (1931).

2866